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Abstract 

 Recently, a growing number of studies in the United States have provided evidence that 

students have difficulty with proofs in advanced mathematics courses (Moore, 1990, 1994; 

Weber, 2001). Few research studies, however, have focused on undergraduates’ abilities to 

produce proofs and counterexamples in the domain of continuous functions and, more 

specifically, on Taiwanese undergraduates’ abilities. In this study, we examine Taiwanese 

undergraduates’ performance constructing proofs and generating counterexamples in the context 

of continuous functions. While this study is not designed as a comparative study, our analysis 

provides results that may be compared with existing empirical studies. Such comparisons can 

provide insight into performance differences among undergraduate mathematics 

students—insights that may be particularly meaningful given that Taiwanese school mathematics 

students score consistently high on international achievement tests. More importantly, our study 

has broader implications for instructors who would like to improve undergraduates’ proof 

performance in advanced mathematics courses.  
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Introduction 

 Many consider proof to be central to the discipline of mathematics and the practice of 

mathematicians. Accordingly, undergraduates in advanced mathematics courses are expected to 

master the skills required to both construct proofs and generate counterexamples. Existing 

empirical studies in the United States, however, have shown that many undergraduate students 

have difficulty with proof (Harel & Sowder, 1998), particularly with constructing formal proofs 

in advanced mathematics courses, such as introductory group theory and other introduction 

courses to higher mathematics (Moore, 1990, 1994) and abstract algebra (Weber, 2001). Yet few 

studies have focused specifically on undergraduates’ proof performance in the domain of 

continuous functions, and even fewer on Taiwanese undergraduates’ proof performance.  

In this study, we examine thirty-six Taiwanese undergraduate mathematics majors’ 

performance constructing proofs and generating counterexamples in the domain of continuous 

functions—an important area within the undergraduate mathematics curriculum. This study was 

guided by the following two research questions: (1) How well do Taiwanese undergraduate 

mathematics majors1 construct proofs and generate counterexamples in the domain of c

functions? (2) What errors appear in the proofs students construct or the counterexam

generate? The data consist of students’ responses to a written assessment in which they either 

constructed proofs for statements they considered to be true or generated counterexamples for 

statements they considered to be false. 

ontinuous 

ples they 

                                                

While this study is not designed as a comparative study, it does provide results that can be 

considered in relation to existing empirical studies in the United States. Given the successful 

performance of Taiwanese elementary and secondary school students on international 

 
1 Further references to the Taiwanese undergraduate mathematics majors will be abbreviated to the Taiwanese 
undergraduates for the sake of simplicity. 
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mathematical achievement tests, such comparisons may provide insight not only into 

performance differences among undergraduate mathematics students, but more importantly into 

the design of curriculum and instruction that may lead to improvements in undergraduate 

students’ proof performance in advanced mathematics courses.  

Theoretical Perspective 

 In this section, we discuss the relationship between concept definitions and either proofs or 

counterexamples. Vinner and colleagues (Tall & Vinner,1981; Vinner, 1983; Vinner & Dreyfus, 

1989) define concept definition as a formal definition that can be written or spoken in 

mathematical language. According to Chin and Tall (2000), students often develop an 

understanding of concepts informally before learning their formal definitions. Moreover, 

informal concept definitions are essentially informal descriptions of syntactic knowledge with 

students’ own language and often with partial correct understanding of the formal definition. 

 From Tall’s (1989) point of view, a mathematical proof requires that “clearly formulated 

definitions and statements” or “agreed procedures” are used to “deduce the truth of one 

statement from another” (p. 5). Moore (1990, 1994), however, notes that students often lack a 

relevant understanding of concept definitions or they often do not know how to apply the 

concept definitions in the specific domain of writing proofs. Zaslavsky and Peled (1996) found 

that mathematics teachers, who received an undergraduate degree in mathematics, and student 

teachers, who have completed several advanced mathematical courses, also have difficulties 

generating counterexamples due to their lack of conceptual understanding. Taken together, 

proofs and counterexamples involve checking true and false statements. Without adequate 

understanding of the content of informal and formal definitions, it is likely difficult for students 

to determine the truth or falsity of a statement as well as to produce a proof if the statement is 
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deemed true or a counterexample if deemed false. In this study, we take the view of concept 

definitions regarded as informal and formal definitions to explore Taiwanese undergraduates’ 

proof performance in the domain of continuous functions. 

Methods 

Participants 

 Participants in this study were selected by convenience sampling as participants were 

contacted by colleagues of the researchers, and were selected on the basis of their willingness to 

participate in the study. Participants in this study included thirty-six Taiwanese undergraduates 

enrolled in Advanced Calculus I in Fall 2007 at a national university in Taiwan. Continuous 

functions were addressed in a previous calculus course, thus all of the students participating in 

this study had some relevant domain knowledge. Students in Advanced Calculus I are usually 

college-aged and disproportionately male. This study does not target participants based on age, 

gender, or other characteristics, but the course enrollment gender distribution provided more men 

than women as participants. 

Instrument 

 The instrument was written in English because English is used in advanced calculus courses 

at the university in Taiwan. The instrument, which was comprised of five mathematical 

statements constructed by the researchers, was designed to provide a measure of students’ 

concepts of continuous functions as listed in Table 1. The mathematical statements were 

designed to (a) reflect understanding of continuous functions, (b) be representative of basic types 

of proofs and counterexamples in continuous functions, and (c) be completed by each participant 

in approximately 30 minutes. The instrument was finalized after pilot testing with Taiwanese 

undergraduates and graduate students with a major in mathematics. 
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Table 1 

Five Propositions Used in This Study 
Proposition 
number 

Mathematical statement True or false

1. Let f and g be functions defined on a set of numbers S, and 
let . If f is  a S∈
continuous at a and g is discontinuous at a, then fg is 
discontinuous at a. 

False 

2. Let f be a function defined on a set of numbers S, and let f be 

the function whose value at x is ( )f x . If f is continuous 

at , thena S∈ ( )f x  is continuous at a S∈ . 

True 

3. Let 2f be a function defined on a set of numbers S, and 
let . Ifa∈S 2f is continuous at a, then f is continuous at a. 

False 

4. Let f be a continuous function from [0 , 1] onto [0 , 1]. Then 
there exists a point 0x ∈[0, 1] such that 0 0( )f x x= . 

True 

5. Let D = [0, 1] (2, 3] and 

define y

∪

R→Df : b
0 1

( )
1 2 3

x if x
f x

x if x

⎧ ≤ ≤⎪= ⎨
− < ≤⎪⎩

, 

then is continuous. RD →:f

True 

Note. Proposition 4 is from the master’s entrance examination of the department of mathematics of National Tsing 
Hua University in Taiwan (2001). Proposition 5 is from Advanced calculus: A course in mathematical analysis by P. 
M. Fitzpatrick (1996, p.56).  
 

Data Collection 

 The primary source of data was students’ written responses to the above instrument. The 

instrument was administered to the students in their advanced calculus classes after completing 

all course instruction in continuous functions. Students were asked to construct proofs for 

statements they believed to be true and to generate counterexamples for statements they believed 

to be false. Students were asked not to include their names in order to maintain anonymity.  

Data Analysis 

 Data were gathered on concept definitions through students’ proofs, correctness of proofs 

and counterexamples, and errors manifested in the students’ answers. In this section, we discuss 
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the coding of each item in the following manner. 

 Coding the concept definitions of proof 

 Table 2 provides a brief description of the codes used to distinguish types of concept 

definitions in continuous functions.  

Table 2 

Descriptions of Codes for Concept Definitions of Proofs 
Code Description 
No response Left blank 
No basis of definitions No relevant syntactic knowledge presented 
Informal definitions An informal description of syntactic 

knowledge with students’ own language and 
with partial correct understanding 

Formal definitions An essentially correct formal definition in full 
detail using mathematical language 

Incorrect formal definitions A partially correct description using formal 
definitions in mathematical language 

 

Coding the correctness of proofs and counterexamples 

 Table 3 and Table 4 provide a brief description of the codes that were used when coding the 

correctness of proofs. 

Table 3 

Descriptions of Codes for Correctness of Proof 
Code Description 
No response Left blank 
Counterexample Giving an incorrect counterexample instead of 

a proof 
No basis for constructing a proof No relevant syntactic knowledge presented 

like a guess 
Not proof but relevant information presented Only narrating relevant syntactic knowledge 

presented 
Result achieved with some reasoning omitted Almost presenting a complete proof but 

making minor errors 
Completeness A complete proof 

 

 



 7

Table 4 

Descriptions of Codes for Correctness of Counterexample 
Code Description 
No response Left blank 
Proof Giving an incorrect proof instead of a 

counterexample 
No basis for generating a counterexample No relevant syntactic knowledge presented 

like a guess 
Not counterexample but relevant information 
presented 

Only narrating relevant syntactic knowledge 
presented  

Result achieved with some reasoning omitted Almost presenting a complete counterexample 
but making minor errors 

Completeness A complete counterexample 
 

The manifested errors in students’ proofs and counterexamples 

 The manifested errors in the students’ attempts to construct proofs and to generate 

counterexamples were investigated by analyzing student’s written work. 

Coding reliability 

To check the reliability of the coding, the investigators and an independent coder worked 

separately, and ten students’ responses were selected randomly to be coded by an independent 

coder. Agreement between the investigators and the independent coder was 84% for coding the 

concept definitions of proof, 81% for coding the correctness of proof, and 86% for coding the 

correctness of counterexample.   

Results 

 We first focus on the quantitative data of Taiwanese undergraduates’ responses to a written 

instrument in continuous functions, and then on what errors manifested in students’ written work 

of proofs and counterexamples.  

Quantitative Data of Taiwanese Undergraduates’ Responses 

 Table 5 displays the types of concept definitions used by students when writing proofs for 
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true statements in continuous functions. As Table 5 shows, none of the students used formal 

definitions in continuous functions to construct proofs. 

Table 5 

Types of Students’ Concept Definitions in Writing Proofs 
No response 
 
 

No basis of 
definitions 

Informal 
definitions 

Formal 
definitions 

Incorrect 
formal 
definitions 

Proposition 
number 

n % n % n % n % n % 
2. 19 53 5 14 8 22 0 0 4 11 
4. 13 36 7 19 14 39 0 0 2 6 
5. 4 11 24 67 8 22 0 0 0 0 

  

The following are examples of the codes (a) no basis of definitions, (b) informal definitions, 

and (c) incorrect formal definitions when students constructed the proof for the Proposition 2 by 

using concept definitions. 

Proposition 2: Let f be a function defined on a set of numbers S, and let f be the function 

whose value at x is ( )f x . If f is continuous at a S∈ , then ( )f x  is continuous at . a S∈

No basis of definitions 

 

 

 

Informal definitions 
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Incorrect formal definitions 

 

 

 

 

 

 

 

Table 6 shows students’ performance in constructing proofs for true statements in 

continuous functions. As Table 6 shows, none of the students provided a complete proof for each 

true mathematical statement. 

Table 6 

Students’ Performance Constructing Proofs 
No response Counter- 

example 
No basis for 
constructing 
a proof 

Not proof 
but relevant 
information 
presented 

Result 
achieved 
with some 
reasoning 
omitted 

Complete- 
ness 

Proposition 
number 

n % n % n % n % n % n % 
2. 18 50 4 11 3 8 11 31 0 0 0 0 
4. 13 36 4 11 11 31 8 22 0 0 0 0 
5. 7 19 1 3 20 56 8 22 0 0 0 0 

 

The following examples are for (a) a counterexample, (b) no basis for constructing a proof, 

and (c) not a proof but relevant information presented when students constructed a proof for the 

Proposition 2.  

Proposition 2: Let f be a function defined on a set of numbers S, and let f be the function 
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whose value at x is ( )f x . If f is continuous at a S∈ ,

 

 

 then f ( )x  is continuous at . a S∈

Counterexample 

 

 

 

 

 

 

No basis for constructing a proof 

 

 

 

Not proof but relevant information presented 

 

 

 

 

 

 

 

 

Table 7 shows students’ performance generating counterexamples for false statements in 

continuous functions. As Table 7 indicates, nine and seven students generated complete 
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counterexamples for the Propositions 1 and 3, respectively. 

Table7 

Students’ Performance Generating Counterexamples 
No response Proof No basis for 

generating a 
counter- 
example 

Not 
counterexam
ple but 
relevant 
information 
presented 

Result 
achieved 
with some 
reasoning 
omitted 

Complete- 
ness 

Proposition 
number 

n % n % n % n % n % n % 
1. 10 28 14 39 0 0 0 0 3 8 9 25 
3. 16 44 6 17 5 14 0 0 2 6 7 19 

 

The following examples are for a) a proof, b) no basis for generating a counterexample, c) 

not a counterexample but relevant information presented, d) result achieved with some reasoning 

omitted, and e) completeness when students generated a counterexample for the Proposition 3.  

Proposition 3: Let 2f be a function defined on a set of numbers S, and let . Ifa S∈ 2f is 

continuous at a, then f is continuous at a. 

Proof 

 

 

 

 

 

 

No basis for generating a counterexample 
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Result achieved with some reasoning omitted 

 

 

 

 

 

 

 

Completeness 

 

 

 

 

 

 

Errors Manifested in Students’ Written Work 

Errors manifested in students’ written work were analyzed in detail for each proof and 

counterexample. The analysis of the data revealed a number of errors, and the main sources are 

discussed below. 

1. In general, many students were incapable of applying formal mathematical definitions to 

construct formal proofs for Proposition 2, 4 and 5, because they only presented incorrect or 

partially incorrect understanding of the informal mathematical definitions. In light of this, they 

had difficulty determining true or false mathematical statements or producing complete proofs 

for true mathematical and counterexamples for false mathematical statements. 

2. With respect to constructing formal proofs, some students only narrated relevant syntactic 
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knowledge presented with their own language and with partial correct understanding of concept 

definitions in continuous functions.  

3. Perhaps most surprising, none of the students were able to construct complete formal proofs in 

this study although they provided relevant mathematical knowledge with a partial understanding 

of concept definitions in continuous functions. Therefore, participants were unable to apply 

formal mathematical definitions to write formal proofs with mathematical language.  

4. With respect to generating counterexamples, several students (39% for Proposition 1 and 17% 

for Proposition 3) believed the false mathematical statements to be true, and attempted to provide 

a proof.  

Summary 

Even though all participants in this study had some relevant domain knowledge in 

continuous functions because the topic was addressed in a previous calculus course, the data 

indicate that most participants were not able to determine whether the false mathematical 

statements were true or not due to their partial correct understanding of concept definitions. 

Additionally, several of them tried to produce a counterexample for a correct proposition, and 

many of them were not able to produce complete correct proofs for the true mathematical 

statements because they seemed to lack the understanding of the mathematical language needed 

when writing formal proofs. Finally, the percentage of students able to provide counterexamples 

was much higher than the percentage of students able to produce proofs, although the 

percentages are not very large in either case. In other words, generating a correct counterexample 

seemed slightly easier for students than constructing a correct proof.  

Although this study confirms findings from other studies in the United States (Moore, 1990, 

1994; Weber, 2001), the findings are somewhat unexpected given that the successful 
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performance of Taiwanese elementary and secondary school students on international 

mathematics achievement tests might lead one to expect the proof performance of such students 

to be better. Given the mathematical backgrounds of the participants, it is surprising that they 

still had a considerable difficulty generating proofs and counterexamples. Such difficulty was 

unanticipated in part because of so little existing literature on undergraduate Taiwanese students 

and proofs. Overall, the majority of participants did not show an understanding of concept 

definitions in continuous functions.  

Conclusions 

 In this study, participants did not seem to understand the relevant concept definitions needed 

to determine whether given mathematical statements were true or false, and did not seem to 

know how to use their concept definitions to construct proofs when asked to write proofs. These 

findings are consistent with Moore’s work on undergraduates and their construction of proofs 

(1990, 1994). Participants also used informal language instead of mathematical language with 

partial understanding of concept definitions to construct proofs (Rin, 1983), so they had 

difficulty producing proofs. Although this study only asked participants to construct proofs for 

statements that they believed to be true and to generate counterexamples for statements they 

believed to be false, and only for five mathematical statements, these results provide suggestive 

evidence regarding Taiwanese undergraduates’ understanding of concept definitions in 

continuous functions are revealed in their written work.  

Additionally, the comparisons between this study and existing empirical studies in the 

United States (Moore, 1990, 1994; Rin, 1983) show that Taiwanese undergraduates have similar 

difficulties to American undergraduates when writing proofs. Even though the successful 

performance of Taiwanese elementary and secondary school students on international 
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mathematical achievement tests is well known, such comparisons allowed by this research 

suggest that Taiwanese undergraduates encounter similar challenges as their American 

counterparts in constructing proofs.  

In mathematics, true propositions are supported by proofs while false propositions are 

refuted by counterexamples. In order to determine if propositions are true or false, students 

should have a deep understanding of concept definitions in the specific domain because 

mathematical propositions involve formal mathematical definitions. In this view, concept 

definitions play an important role in mathematics courses for learning to produce proofs and 

counterexamples. Although formal definitions are taught in undergraduate mathematics courses, 

students are not generating these concepts, which could be explained by multiple factors: (a) 

these concepts seem to be too abstract for students, (b) students need more time to finish the 

mathematical statements, or (c) the mathematical statements do not make any sense to students 

and so they cannot generate mathematical language on their own even with a complete 

understanding of mathematical definitions.  

In order to develop undergraduates’ understanding of concept definitions, mathematics 

instructors and professors may consider a stronger emphasis on formal definitions when teaching 

new sections. To assist undergraduates in writing proofs and generating counterexamples, it is 

possible that mathematics instructors and professors should pay more attention to students’ 

written work to help them write increasingly formal proofs and complete counterexamples. Since 

this requires changing the pedagogies of mathematics instructors and professors with regard to 

concept definitions, proofs, and counterexamples, it will not be easy. But in undergraduate 

mathematics courses, such an enhancement may be a necessary condition for enabling students’ 

understanding of concept definitions and performance in writing proofs and counterexamples. 
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Currently, few research studies have specifically focused on undergraduates’ abilities to 

produce proofs and counterexamples, especially in Taiwan. In order to gain more insight into the 

relationship between undergraduates’ concept definitions and either proofs or concept definitions 

and counterexamples, further research in Taiwan as well as in the United States needs to further 

explore undergraduates’ performance producing proofs and counterexamples by designing more 

mathematical statements and conducting intensive interviews with students to understand their 

perspective. We hope this paper highlights the need to call more attention to empowering 

undergraduates in their learning to write complete proofs and counterexamples with a deep 

understanding of concept definitions in mathematics courses in Taiwan as well as in the United 

States. 
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